! "#$#% & '( K, X3/H }" I q +W R%2. >2" *+ + 1 LN6 H+ +ˆ,
|
|
- Αἰκατερίνη Βιτάλης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< \ -S;? P A" ( 6M [ X& 5 +; \ ; D7 ] +; I$ X & >?# ; U (6 3 I q +W R% RBH % a >M 5 د! "#$#% & '( a.khan9@ms.tabrzu.a.r >" *+ + LN6 H+ +ˆ, ghaem@tabrzu.a.r >" *+ "3Q G+ +!" I" " mbadamh@tabrzu.a.r >" *+ "3Q G+ + 3, + *ق (393//4 :[l/ m" 393//9 :, m" ) ISSN: htt://nsee.sut.a.r +V -S E -;3 K, D -;3V K, :3J -S K, E + -;3 K, E A+< [ V V +/.3VV EV:+ VDV F! F KE + +9) ),.3VV h 3 : }+3" Z(" +9), -;3 K, :3J 3 : }+3" k3" +3VCH B3V) V VEV K, 3? +(" 3 : }+3" +9), -;3 K, E + }K3" K+5 [ B4 D! -S K, E 3 vc + 3< V 3VV V,D V\ KV, X3V/H }" F +/ >HO +.+ X( (non-pdc) K+3.O.+ +/ +! F (LMIs)!"! B3) +/ k+ 3<!" -;3 K, -S E +9), +/ >HO K, X3/H }"!"! (LMIs) Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
2 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 5 Sahand Unversty ofehnology Journal of Nonlnear Systems n Eletral Engneerng Vol.3, No., Summer 5 ISSN: htt://nsee.sut.a.r Stablty Analyss and Controller Desgn for Interval ye- -S Fuzzy Systems Based on Interval ye- -S Fuzzy Observer Under non-parallel Dstrbuted Comensaton and Fuzzy Lyaunov Funton Aroah Arman Khan, Sehraneh Ghaem, and Mohammad Al Badamhzadeh 3 Faulty of Eletral and Comuter Engneerng, Unversty of abrz, abrz, Iran, a.khan9@ms.tabrzu.a.r Corresondng Author, Assstant Prof., Faulty of Eletrall and Comuter Engneerng, Unversty of abrz, abrz, Iran, ghaem@tabrzu.a.r 3 Assoate Prof., Faulty of Eletral and Comuter Engneerng, Unversty of abrz, abrz, Iran, mbadamh@tabrzu.a.r ABSRAC Keywords Interval tye- -S fuzzy model, Stablty analyss, Fuzzy Lyaunov funton, Lnear matr nequaltes (LMIs) In ths aer, we nvestgate the desgn method for nterval tye- (I) -S fuzzy ontroller based on I -S fuzzy observer for nonlnear systems along wth unertanty arameters. In order to analyze the stablty and synthess the ontrol methods onvenently, an I ( S) fuzzy model s aled through reresentng the dynam of nonlnear systems and dynam of observer. Unertanty arameters are atured by I membersh funton haraterzed by the lower and uer membersh funtons. In ths aer, for I fuzzy ontroller, the membersh funtons and number of rules an be freely hosen dfferent from the I S fuzzy model and I -S fuzzy observer. hs method s known non- Parallel Dstrbuted Comensaton. o redue the onservatveness of stablty analyss, a fuzzy Lyaunov funton anddate s aled. he stablty ondtons n term of lnear matr nequltes (LMIs) are obtaned. Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
3 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 5 53" -S E K, D + -;3 K, :3J :- -S E K, E + E + (PDC )K+3 }K3" K+5 X3/H +/ 3".+ f K ==6 -;3 K, :3J -S E K, D + -S E E! +/ >HO A+< O 3 A+< D+5 B3N D F E F!K + 3< E A+<.[7-] O (LMI 3 )!"! K+ +:3J B3N +/ w K, E! K, E K O + 35 HA -S E K, D 3 A -S E K, -S E! -S E P HA.[8] }"! HA }" D!K " + g++ [.+ + K, 3? +(" E -S E D +/.+,D \ +/ >HO + 3: X3/H }" F D-S E -S B3N E - 3\.O 353 +/ >HO 6 7" + 3: X3/H }" -+>,+ {: +,D \ K, X3/H }" ( X3/H }+3" ++ +/ >HO 6.[9] + A+< l/ X(+ z+ K, X3/H }" + *! 3 : }+3" LG X3/H \ 3\ ( E 3\ -;3 K, :3J ++.+,D \ [4 - ] -;3 K, :3J L? -;3 K, :3J 3 : }+3" 3! +/ (.[5] + g++ Bh= Bh= -;3 K, E 95 K+ 49 C.[5] O +9), -;3 K, :3J -;3 K, :3J K+ 3\ MA H=.[6] 3 K, :3J! E B==6" ( ++.3,D \ : KE [ [6].[8-6 4] + 7J+ -S E K+ 4 E -;3 9)+ + MA H=.+ g++ LN4 3< - ;3 K, :3J K G z+ +9), -;3 K, :3J -S E z+ K, D + E A+< >H O +/ >HO + K, X3/H \ (non-pdc) K+3 }K3" K + E -S E K, 3? +(" D -S E! -S E K, 3? +(" D! K, E! E + K, 3? \ +3" 3< E A+< K D.., +E f 3 : ( + D E 3 7= PDC G! E D D akag - sugeno Parallel Dstrbuted Comensaton 3 Lnear Matr Inequlty Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
4 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 53 >H D -S E! -S K, E 3 : +/ K, K f 3 : \ +3" O + 3 b+< 3< O!!? K+ 4 + O K+ +/ >HO K, K K Y 6 + K!? 3< D K++ L?! K+ HA }" 4D \ 3 :.3 3! B3N E D -S K, E! -S K, E E! +/ k+ +9), -;3 K, :3J! -S K, E -C g++ (LMI)!" -E 4 -C.3 g++ +9), -;3 K, :3J D -S K, E 3 -C.3 g++! -S E E! 5 -C.+ +9), -;3 K, :3J E S K 7 -C.+ g++ +/ >HO 6 -C.3 g++ E -S E D -S E.+ DJ O -C.3 [6] +; -\ ; W Rb? A" -S; - Z(" K B3N ψ K, 3? -;3 K, :3J -S E K,! F Rule : IF f () s M % and,...,f () s M% HEN & = A + B u =,,..., ψ ψ () :3< f ( ) K, u + +K, 3? w3 +9), - ;3 K, :3J F M% O `" HA `" f"" B, A O B R, A R n m n =,,..., ψ, =,,..., +٢ -;3 -S K, E. H E* u R m l! HA + R n l.! : K B3N 7+ 3? + 3 L U w (), w (), =,,..., h K 3? () :O w () = µ (f ()) µ (f ())... µ (f ()) L M M Mψ w () = µ (f ()) µ (f ())... µ (f ()) U M M Mψ ψ ψ (3) :3< Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
5 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< µ (f ()) [,] M µ (f ()) [,] M 54 (4) : ) >K + +lh. <3 3 : }+3" 3 : 5 f" µ (f ()) µ (f ()) M U M w () w () L :3 (5) K! J (6) :O K + B3N! -S K, E L U = = & = w ()v ()(A + B u) + w ()v ()(A + B u) = w % ()(A + B u) = w % () = w ()v () + w ()v () [,] L U w % () =, v () [,], v () [,] = (7) :O (8) :3<.3,D \.5 + h3(! }+3" v (), v () O [8] -;3 K, :3J O +; -\ ; W Rb? D7-S ; -3 7= w * \ K, 3? + +9), - ;3 K, D F (9) + B3N D w3 K, 3?. D G! J w :!G D (7)! -S E w3 K, K Rule : If f () s M % and,...,f () s M% hen & ˆ = A ˆ + B u + L (y y ˆ ), =,,..., ψ ψ (9) f ( ) K, u + 7+ K, 3? w3 +9), - ;3 K, :3J F }+3" K, u J+. [8] + e += F ψ =,,..., ψ, =,,..., M% O :3<! K! >J"!? D K++ L?!! K+ HA }" 3 : Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
6 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 55 O B+u" 6 K+ k=, + 35 DK++ L?! K+ HA K, u D+ DK++ L? HA K+ k=, 3 : \ KE 3\ HA + R n l.! `" HA `" f"" (٩) D L B R, A R n n n n +/. H E* u 4 + m l! HA B3N D 5! 5 f"" ŷ ˆ :3 Z("K y = y ˆ = = = w % ()C w % ()C ˆ () -S E! -S E 5 `" C `" + D -S E! -S E 5 () + B3N 7" 3 w % (), O D :(. C = C =... = C = C ().O K + B3N D -S K, E J ˆ& = w % ()(A ˆ + B u + L (y y) ˆ = () +; -\ ; W Rb? IPP -S ; -4.3 g++ () D 3 A (7) -S K, E +/ 3\ +9), -;3 K, E ++ : [8] K+ K, 3? 7= w!? k=, K + B3N E w3 K, 3? Rule : IF g () s N % AND... AND g () s N % HEN u = G ˆ ψ ψ (3) +9), -;3 K, :3J % N : \. HA F, =,,..., ψ, g () m n G R, =,,..., K, u K, + 3< w3 Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
7 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< M () m (),, = m () ψ m () = µ (g ) = ψ = N% m () = µ (g ) N% µ (g ) µ (g ) N% N% 56 (4) (5) (6) (7) 3 : 5 7+ h 3 : 5 f"" m () (7) " (3) k+.[ 8] K, + m () µ N % (g ()) µ N % K h K 7+ (g +("! DK++ L?!! K+ HA }" E w3 3 : }+3" K, u B3N E 3?. D! K, E w3 :3 Z(" K + B3N HA F, u = % = m ()G ˆ (8) : [8] O β ()m () + β ()m () m () =, m () = % % = ( β k ()m k () + βk ()m k ()) k= (9) ) β + β = ( ) ( ) + Z(" -/ K+ u β [ ], β [ ] O. [8] 3,D \.5 + h3( IPP -S D 7 -S a A" -S? P A"-5! HA +/ E* +/ X K + B3N E* Z(" D A+<. +! HA D ( L 4) ) 3 +/ E* D+ 3< e = ˆ () : [] O K B3N + () () w D E J () when t () ˆ when t () :[8] \ () (8) () (7) + 53" w % () = m % () = w % ()m% () = = = = = () Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
8 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 57 :O K + B3N (8) E () D (7) -S K, E E! F = = = = { } & = w % ()m% () (A + B G ) B G e { } e & = w % ()m% () (A L C)e (3) 3< 3 +/ (3) E! +3D L G HA F, +/ X O J +! HA D L 4)! HA m %, w% K+ m % (), w % () 5 D ( 6M-6,D \ K + B3N f""! =9A! 9 `" HA u (3) + A + BG BG a =, Q e = A LC :3!3K K + B3) :3 (4) (3) + 3< non- a = % a = = & w % m Q G -;3 K, :3J K, X3/H }" Z(" Y< K+! =9A! +/ >HO + (5) :* \ + K + B3N K, X3/H }".O! =9A! + +/ w PDC V = % % a a = = w m P P = P >, R n n (6) :3< : +? K H( (5) + 53" [ a M + λ & a M] & a w % m % Q a = = ==A : F λ > +/ >HO = G `" M R n n O K! l/ Y 3/ (+3",D \ \ () +!" 53" :3 +3" [-9]! HA Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
9 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< & w & % = m% = = = 58 (8) + K+ n n n n S R, Y R `" Z(". m %, w% K, K K Y m &%, w& % O l= l= w&% S =, =,,..., l a a m&% Y =, =,,..., l a a :3 +3" (8) (9) :O K B3) V & (9) (7) (6) + 53" & % a a % & a a % & a a = = = = = = V & = w m% P + w m% P + w m% P % % & a a & l a l a & l a l a = = l= l= = w m ( P + w P + m P ) % % & a a & l a l a & l a l a = = l= l= = w m ( P + w (P + S ) + m (P + Y ) ) w% m % ( a P & a w& l a l + a + & l a l + a = = l= l= = + + [ a M + λ & a M] & a w% m% Q a = = (P S ) m (P Y ) ) % % & a a & l a l a & l a l a = = l= l= = w m ( P + w (P + S ) + m (P + Y ) + M & MQ + λ & M & λ & MQ ) a a a a a a a a (3) P + S >, P + Y >, =,,...,, =,,..., :, : ' V m & % w & % 9 >P );D = w &% σ, m& % φ (3) :3!3K K B3N (3) + φ σ O % & a a l a l a l a l a = = l= l= V & w m % ( P + σ (P + S ) + φ (P + Y ) + M & MQ + λ & M & λ & MQ ) a a a a a a a a (3).3!3K K B3N (3)! + (7) + Z(" M `" K+ 4 + Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
10 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 59 % & a a l a l a = = l= V & w m % ( MM P M M + σ MM (P + D )M M + φ MM (P + F )M M + MM MM M & l= l a l a a a MM MQ M M + λ & MM MM M & a a a a λ & MM MQ M M ) a a (33) :3!3K K B3N (33) + % & a a l a l a = = l= V & w m % ((M ) M P M (M ) + σ (M ) M (P + S )M (M ) & l a l a a a l= + φ (M ) M (P + Y)M (M ) + (M ) M MM (M ) (M ) M MQ M (M ) + λ(m & )M MM (M & ) a a a a λ(m & ) M MQ M (M )) a a (34) : 4) + + (7) +, [!D (34) + K+ K + G+ 53" (M ) M MM (M & ) (M ) M MQ M (M ) a a a a + λ(m & )M MM (M & ) λ (M & ) M MQ M (M ) = a a a a (35) :3 Z(" f (+ K `" u W = M, G = N W, L = W X, V = WP W, Ε = WS W, Ι = WY W, l l & l l a a l= l= ϒ = σ (V + Ε ), Γ = φ (V + Ι ), ζ = W, γ = W ; =,,...,, e `" `" W W W = dag[w, W ] O + (35) + J. HA F, D `" ( f `" m n n m N R,X R QW W ζ ζ γ = λqw λw γ :3 K + B3N +3" (36) QW λqw W = λw : +? K + (36) + 53" (37) Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
11 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 6 `" + Š^ X< f"" F = dag[i, W,I, W ] n n D = dag[i, W, I, W ] n n `" vm :O K + (37) + AW BG W BG W W A + W LC W ζ ζ γ = A λ W λbg W λbg λw γ λ W A + λw LC λw (38) Ξ = AW BN BG W A + XC :@,D \ :3 K + B3N +3" + (34) + ζ ϒ + Γ + Ξ + Ξ V + W + λξ ζ γ V W (W W ) + + λξ λ + γ V & w% m % = = ζ = wm % % ζ γ Θ = = γ (39) :O Θ = Ω = = = w m Ω ϒ + Γ + Ξ + Ξ V + W + λξ V + W + λξ λ (W + W ) >HO s.3 +? V& < w Ω < D+ 3. V& <! =9A! +/ +.+ O K? A+< +/!. φ σ 3< m&% φ w &% σ + 3 ==A : F λ >,: ]H () - ;3 K, D (7)! K, E K+ LG" (3) +9), -;3-S K, E E :3,D \ K `" D+ + +/! =9A B3) (8) -;3 K, E S = S R, Y = Y R, V = V R, Ε = Ε R n n n n n n n n n n m n n m n n Ι = Ι R, N R, X R, W = W R, W = W W = W R, W = W R, ( =,,...,, =,,..,),( ) n n n n W Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
12 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 6 :3 O K LMI 3< V > V + Ε >, V + Ι > ϒ + Γ + Ξ + Ξ V + W + λξ < ( =,,...,, =,,..,),( ) V + W + λξ λ (W + W ) :O AW BN BG ϒ = σ l (V l + Ε ), Γ = φ l (V l + Ι ), Ξ = l= l= W A + XC :O K B3N L D G HA F, B3)@+ G = N W, =,,..., L = W X, =,,...,?$ h-7 E/ }M3 u" +K " O * \ + K + +/ + z3g( E/! :[6] DK++ L? θ && θ = & g sn( θ) aml θ sn( θ) / a os( θ)u 4L / 3 aml os ( θ) (4) E3< L a = / (m + M ) M E/ 75 m P5 v g E/ }M3 u" +K : K B3N! +/ B+u" 6. 3"3 f!a ++ + θ u O E/ m [m m ] = [ 3] kg mn ma M [M M ] = [8 6] kg mn ma L = m = θ 5 π / 5 π / (rad) = θ& [ 5 5] (rad / s) ] :K B3N HA \ :O K + B3N HA Bh( & g aml os( ) sn( a os( ) ) u = ( ) + & 4L / 3 am 4L / 3 am Los ( ) Los ( ) (4) Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
13 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 6 :3,D \ K + B3N K, u g am L os( ) sn( ) a os( ) f () ( ) f ( ) Los ( ) =, = 4L / 3 amlos ( ) 4L / 3 am :O O (4)!-S E (4) Bh( 53" (4) (4) (9) () k+ 53" A = A =, A3 A 4, B B 3, B B4 fmn = = fma = = f = = mn f ma f =.78, f = 8.48, f =.765, f =.6 mn ma mn ma C = C = C = C = C = [ ] 3 4 (43) + 4 +! K! >J" +! (?+ HA B+u" 6 K+ k=, (43) + f=" 3< DK++ L?! E+ HA K+ " 3 : }+3" Z(" + HA E5 B3N D! E K, 3? h 3 : }+3".O (?+! K+.3,D \ K z3g( E/ -S E w3 3 : }+3" : E5 h 3 : 3 : }+3" µ = µ =.3e M% M% µ = µ = e 3 4 M% M% µ = µ = e 3 M% M% 4 M% M%..5 µ = µ =.5e.5.5 µ = µ = e M% M% 3 4 M% M% 3 M% M% 4 M% M%. µ = µ =.3e µ = µ =.5e µ = µ = e }" +3CH B3N E w3 K, u J+ 3,D \ K, 3? > E + 3 : }+3". O +? k+ 3< 3,D \ DK++ L? HA u : g () e.35 K B3N = = K, u 53" E h m ( ) = µ ( ) = m ( ) = µ = e N% N%.35 m ( ) = µ ( ) = m ( ) = µ = µ ( ) N% N% N% β = β =.5 :3 +3" E! E K, K h A O + w% w% m% m% w %& = = &, m& % = = & t t Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
14 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 63 K B3N E K, E! K, E K Y }" k=, m% w% G+ 53" :O w w m% m% w & % % % & m& % & = =, = = t t & = (w% [ ] w [ ] w 3[ ] w 4[ ] ) + % + + % % = (w% + w% + w% + w% ) = w% = 3 4 = 4 :O E! E K, K K Y h A HA u B+u" 6 53" J :3 6 K B3N E w& % σ = 3.99, w& % σ = w& % σ = 7.8, w& % σ = m& % φ = 4.5, m& % φ = 4.5 :O K B3) D HA F,? K+ 4 + G = [ ], G =[ ] L = L =,L3 L4.6 = = :K Z9 C H+ k+ 6" + H E*! HA m/ K s () : () : X() = [.3 ] ˆX() = [ ] X() = [.3 ] ˆX() = [ ] m = m mn = kg, M = M mn = 8kg m = m ma = 3kg, M = M ma = 6kg (( ) Z9 C 75 Z9 C 75 3 A + z3g( E/! 3 E K. F 3 + +! HA 3 D +/ Z9 C H+ k+ m M Z9 C 75 H+ k+ + + HA m/ () LG. 7= D E 3 D +,+ =" HA m/ 3 O 53" Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
15 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 64 Z9 C 75 H+ k+ + + HA () LG.+ + HA.+ L 4) ()- ((=[.3 ])) (rad) and estmaton of (rad) ()- estmaton of ((=[.3 ])) ()- ((=[-.3 ])) ()- estmaton of ((=[-.3 ])) tme(se) m = M = 8 = + m/ :LG.5.5 ()-error between & estmaton of (()=[.3 ]) ()error between & estmaton of (()=[-.3 ]) error tme(se) m = 3 O 53" Z9 C 75 H+ k+ + + H+ k+ + + M = 8 : (4) LG.+ + HA m/ (3) LG HA 3 D.+ L 4) Z9 C 75 3 ()- (()=[.3 )] (rad/s) & estmaton of (rad/s) - - ()- estmaton of (()=[.3 ]) ()- (()=[-.3 ]) ()- estmaton of (()=[-.3 ]) tme(se) m = M = 8 = + m/ : 3 LG Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
16 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 65.5 ()- error between & estmaton of (()=[.3 ]) ()- error between & estmaton of (()=[-.3 ]) error tme(se) m = M = Z9 C H+ k+ m : 4 LG M = 8 = + H E* (5) LG 5 5 ()- ontrol sgnal for ()=[.3 ] ()- ontrol sgnal for ()=[-.3 ] u tme(se) m = M = 8 + u H E* :5 LG M = 6 = + K (Z9 C 75) ( L= D E 3 7= H+ k+ + + HA m/ (6) LG.+ 7J+ Z9 C H+ k+ m = 3 +,+ =" HA m/ 3 O 53" Z9 C H+ k+ + + HA (7) LG.+ + HA 3 D.+ L 4) Z9 C 75 3 O 53" Z9 C 75 H+ k+ + + H+ k+ + + HA (9) LG.+ + HA m/ (8) LG HA 3 D.+ L 4) Z9 C 75 Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
17 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 66.5 ()- (()=[.3 ]) (rad) and estmaton of (rad) ()-estmaton of (()=[.3 ]) ()- (()=[-.3 ]) ()-estmaton of (()=[-.3 ]) tme(se) º =» = µ¹ + µ m/ :6 LG.5.5 ()-error between & estmaton of (()=[.3 ]) ()error between & estmaton of (()=[-.3 ]) error tme(se) m = 3 M = 6 :7 LG 3 ()- (()=[.3 ]) (rad/s) and estmaton of (rad/s) - - ()-estmaton of (()=[.3 ]) ()- (()=[-.3 ]) ()-estmaton of (()=[-.3 ]) tme(se) m = 3 M = 6 = + m/ : 8 LG Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
18 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 67.5 ()- error between & estmaton of (()=[.3 ]) ()- error between & estmaton of (()=[-.3 ]) error m = 3 M = 6 tme(se) :9 LG 5 5 ()- ontrol sgnal for ()=[.3 ] ()- ontrol sgnal for ()=[-.3 ] u tme(se) m = 3 M = 6 + u H E* :LG :3 L: K B3N HA K+ G+ 53" + e = ˆ ˆ e& = & & e = ˆ e& = & ˆ& :3 +3" h k " e = e& + ˆ ˆ G+ O Y f!a ++ B3N G+ 53" + +3 D> += : 6H K+ O 3 4) 9 K HA K+ J.3 d w3 D K, KE +9), -;3 K, Y -S K, E K K / K, E D KE z+ `Q. +/ Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
19 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 68? F 6" E D! K, E E! + +/ >HO s K, X3/H }" + 3: X3/H }" K+ 4 + ld A+< [ e+. (LMI)!"! B3N K +5 G K A+< + (PDC) K+3 }K3" K +5 G +/ \ +3" b+< 3< E {: (non-pdc) K+3 }K3" K s 53". + PDC G! "O K / E + K, + +9), -;3 K, 7= E. 7= K, D F 3 3 +! HA ( Z9 C = X# []. K. anka,. lkeda and H.. Wang, Fuzzy Regulators and Fuzzy Observers: Relaed Stablty ondtons and LMI based Desgn, IEEE ransatons on Fuzzy Systems, vol. 6, no.,.5-65, 998. []. Chen, B.S., eng, C.S., Uang, H.J. Med H / H fuzzy outut feedbak ontrol desgn for nonlnear dynam systems: an LMI aroah, IEEE rans. Fuzzy Syst., vol 8, ,. [3]. Lu, X., Zhang, Q. New aroahes to H ontroller desgns based on fuzzy observers for akag Sugeno fuzzy systems va LMI, Automata, vol. 39, , 3. [4]. Ln, C., Wang, Q.G., Lee,.H, Imrovement on observer- based H ontrol for -S fuzzy systems, Automata, vol 4, , 5. [5]. Yoneyama, J., Nshkawa, M., Katayama, H., Ihkawa, A.: Outut stablzaton of akag-sugeno fuzzy systems, Fuzzy Sets Syst, vol, , [6]. Ma, X.J., Sun, Z.Q., He, Y.Y. Analyss and desgn of fuzzy ontroller and fuzzy observers, IEEE rans. Fuzzy Sys., vol 6,. 4-5,. [7]. eera, M.C.M., Assunao, E., Avellar, R.G. On relaed LMI-based desgn for fuzzy regulators and fuzzy observers, IEEE trans. Fuzzy Syst, vol,.63-63, 3. [8]. seng, C.S. A novel aroah to H deentralzed fuzzy-observer-based fuzzy ontrol desgn for nonlnear nteronneted systems, IEEE rans. Fuzzy Syst., vol 6, 8. [9]. K. anaka,. Hor, and H. O. Wang, A multle Lyaunov funton aroah to stablzaton of fuzzy ontrol systems, IEEE rans. Fuzzy Syst., vol, no. 4, , Aug. 3. []. K. anaka,.hor and H.O.Wang, A desrtor system aroah to fuzzy ontrol system desgn va fuzzy Lyaunov funton, IEEE ransatons on Fuzzy systems, vol.5, no.3, , 7. []. H. K. Lam, Stablty analyss of CS fuzzy ontrol systems usng arameterdeendent Lyaunov funton, IE ontrol theory & Alatons, vol.3, no.6, , 9. Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
20 K+3 }K3" K+5 K, X3/H }" G +9), ;3 K, D 3 A +9),- ;3-SK, E E! +/ >HO A+< 69 []. D.H.Lee, J.B.Park and Y.H.Joo, A New Fuzzy Lyaunov funton for relaed stablty ondton of ontnuous tme akag-sugeno Fuzzy Systems, IEEE ransatons on Fuzzy Systems. vol 9. no.4, ,. [3]. L. A. Mozel, R.M Palhares, F.O.Souza and E.M.A.M.Mendes, Redung onservatveness n reent stablty ondton of -S fuzzy systems, Automaton, vol.45, no.6,, , 9. [4]. ao Zhao, Jan Xao, ye L and YXng L, A Fuzzy Lyaunov Funton Aroah to Stablzaton of Interval ye- -S Fuzzy Systems, IEEE Control and Deson Conferenes (CCDC).,.34-38, 3. [5]. J.M. Mendel, R.I. John, and F.Lu, Interval tye- fuzzy log systems made smle, IEEE rans. Fuzzy Syst., vol. 4, no.6,. 88-8, De. 6. [6]. H. K. Lam and L. D. Senevratne, Stablty analyss of nterval tye- fuzzy-modelbased- ontrol systems, IEEE rans. Syst., Man, Cybern. B, Cybern. vol.38, no.3, , Jun.8. [7]. H. K. Lam, M. Narman, and L.d senevrtane, LMI-based stablty ondtons for nterval tye- fuzzy log based ontrol systems, n ro. IEEE Int. Conf. Fuzzy Syst., ,. [8]. Lam, H.K.; Hongy L; Deters, C.; Seo, E.L.; Wurdemann, H.A.; Althoefer, K., Control Desgn for Interval ye- Fuzzy Systems Under Imerfet Premse Mathng, Industral Eletrons, IEEE ransatons on, vol.6, no., , Feb. 4. Journal of Nonlnear Systems n Elet. Eng. Vol. 3, No., Summer5 394!" 3
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University
A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1
Evaluation of Expressing Uncertain Causalities as Conditional Causal Possibilities
Evaluaton of Expressng Uncertan Causaltes as Condtonal Causal ossbltes Koch Yamada Department of lannng & Management Scence, agaoa Unversty of Technology eng & Regga (v u u u v v u (v u ) 0 u v V [1] [1]
Power allocation under per-antenna power constraints in multiuser MIMO systems
33 0 Vol.33 No. 0 0 0 Journal on Councatons October 0 do:0.3969/.ssn.000-436x.0.0.009 IO 009 IO IO N94 A 000-436X(0)0-007-06 Power allocaton under er-antenna ower constrants n ultuser IO systes HAN Sheng-qan,
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
9 /393 / Downloaded from energy.kashanu.ac.r at 5:3 0330 on Saturday October 0th 08 * hajakbar@grad.kashanu.ac.r mohammad@kashanu.ac.r. (shunt-apf) :... PSIM. : * 3... Downloaded from energy.kashanu.ac.r
A Method for Determining Service Level of Road Network Based on Improved Capacity Model
30 4 2013 4 Journal of Hghway and Transportaton Research and Development Vol. 30 No. 4 Apr. 2013 do10. 3969 /j. ssn. 1002-0268. 2013. 04. 018 1 1 2 1. 4000742. 201804 2 U491. 1 + 3 A 1002-0268 201304-0101
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê
Ó³ Ÿ. 2006.. 3, º 2(131).. 105Ä110 Š 537.311.5; 538.945 Œ ƒ ˆ ƒ Ÿ ˆŠ ˆ ƒ Ÿ ƒ ˆ œ ƒ Œ ƒ ˆ ˆ Š ˆ 4 ². ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ³ É É Ö μ ² ³ μ É ³ Í ² Ö Ê³ μ μ ³ É μ μ μ²ö
A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,
Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng
IF(Ingerchange Format) [7] IF C-STAR(Consortium for speech translation advanced research ) [8] IF 2 IF
100080 e-mal:{gdxe, cqzong, xubo}@nlpr.a.ac.cn tel:(010)82614468 IF 1 1 1 IF(Ingerchange Format) [7] IF C-STAR(Consortum for speech translaton advanced research ) [8] IF 2 IF 2 IF 69835003 60175012 [6][12]
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,
ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα Βασίλειος Σύρης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Εαρινό εξάμηνο 2008 Economcs Contents The contet The basc model user utlty, rces and
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square
CS 675 Itroducto to Mache Learg Lecture 7 esty estmato Mlos Hausrecht mlos@cs.tt.edu 539 Seott Square ata: esty estmato {.. } a vector of attrbute values Objectve: estmate the model of the uderlyg robablty
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ
ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ «ΑΕΙΦΟΡΙΚΗ ΔΙΑΧΕΙΡΙΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΦΥΣΙΚΩΝ ΠΟΡΩΝ» ΤΜΗΜΑ ΔΑΣΟΛΟΓΙΑΣ & ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ & ΦΥΣΙΚΩΝ ΠΟΡΩΝ Μεταπτυχιακή Διατριβή με
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
W τ R W j N H = 2 F obj b q N F aug F obj b q Ψ F aug Ψ ( ) ϱ t + + p = 0 = 0 Ω f = Γ Γ b ϱ = (, t) = (, t) Ω f Γ b ( ) ϱ t + + p = V max 4 3 2 1 0-1 -2-3 -4-4 -3-2 -1 0 1 2 3 4 x 4 x 1 V mn V max
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο
πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση του αριθμού του οικονομικά ενεργού
Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design
Supplemental Material for Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design By H. A. Murdoch and C.A. Schuh Miedema model RKM model ΔH mix ΔH seg ΔH
το περιεχόµενο των οποίων είναι διανεµηµένο µε τον εξής τρόπο: : κάθε πίστα περιέχει
EL Ref. 20620 %$ #"! $,+ *$ ' ' )( '& 4. 3: 046 2 4. 32 1. 0. @ 0.. A A0 ON B D CS SPN R NR KJ A G D R QDC ONR H PC KJ L MN \ [ Z RV RP N S H S A A. 0@ 2 :. ; KJ ^ N \ CV W]P E ] 8 6 2 0 3 6 X _ Z R N
Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a
Per -.(D).() Vdymndr lsses Solutons to evson est Seres - / EG / JEE - (Mthemtcs) Let nd re dmetrcl ends of crcle Let nd D re dmetrcl ends of crcle Hence mnmum dstnce s. y + 4 + 4 6 Let verte (h, k) then
Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο
απασχολούμενου πληθυσμού - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού υπολογίζεται με τη διαίρεση του αριθμού του ισοδύναμου πλήρως
EL ECTR IC MACH IN ES AND CON TROL. System s vulnerability assessment of a ircraft guarantee system based on improved FPN
13 3 20095 EL ECTR ICMACH IN ESANDCON TROL Vol113 No13 May 2009 FPN,, (, 150001) :,,Petr( FPN ), BP, FPN,,,, : ; ; Petr; : U661 : A : 1007-449X (2009) 03-0464- 07 System s vulnerablty assessment of a rcraft
Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn
2015 11 Nov 2015 36 6 Journal of Zhengzhou University Engineering Science Vol 36 No 6 1671-6833 2015 06-0056 - 05 C 1 1 2 2 1 450001 2 461000 C FCM FCM MIA MDC MDC MIA I FCM c FCM m FCM C TP18 A doi 10
Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο
15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού
ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)
ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.
Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο
Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών υπολογίζεται με
The one-dimensional periodic Schrödinger equation
The one-dmensonal perodc Schrödnger equaon Jordan Bell jordan.bell@gmal.com Deparmen of Mahemacs, Unversy of Torono Aprl 23, 26 Translaons and convoluon For y, le τ y f(x f(x y. To say ha f : C s unformly
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο
οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών υπολογίζεται με τη διαίρεση
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
Robust resource allocation algorithm for cognitive radio system
35 4 Vol.35 No. 4 2014 4 Journal on Communcatons Arl 2014 o:10.3969/j.ssn.1000-436x.2014.04.014 ( 130012) SINR QoS SOCP QoS N929 A 1000-436X(2014)04-0124-06 Robust resource allocaton algorm for cogntve
2.153 Adaptive Control Lecture 7 Adaptive PID Control
2.153 Adaptive Control Lecture 7 Adaptive PID Control Anuradha Annaswamy aanna@mit.edu ( aanna@mit.edu 1 / 17 Pset #1 out: Thu 19-Feb, due: Fri 27-Feb Pset #2 out: Wed 25-Feb, due: Fri 6-Mar Pset #3 out:
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο
Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το μερίδιο εργοδοτουμένων με μερική ή/και προσωρινή απασχόληση
SONATA D 295X245. caza
SONATA D 295X245 caza 01 Γωνιακός καναπές προσαρμόζεται σε όλα τα μέτρα σε όλους τους χώρους με μηχανισμούς ανάκλησης στα κεφαλάρια για περισσότερή αναπαυτικότητα στην χρήση του-βγαίνει με κρεβάτι η χωρίς
(2), ,. 1).
178/1 L I ( ) ( ) 2019/1111 25 2019,, ( ), 81 3,,, ( 1 ), ( 2 ),, : (1) 15 2014 ( ). 2201/2003. ( 3 ) ( ). 2201/2003,..,,. (2),..,,, 25 1980, («1980»),.,,. ( 1 ) 18 2018 ( C 458 19.12.2018,. 499) 14 2019
Research on fault detection for Markovian jump systems with time-varying delays and randomly occurring nonlinearities
33 9 2016 9 DOI: 10.7641/CTA.2016.60012 Control Theory & Applcatons Vol. 33 No. 9 Sep. 2016 1 1 2 (1. 163318; 2. 163318) (RONs)... H. Lyapunov H.. ; ; ; TP273 A Research on fault detecton for Markovan
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Approximation Expressions for the Temperature Integral
20 7Π8 2008 8 PROGRSS IN CHMISRY Vol. 20 No. 7Π8 Aug., 2008 3 3 3 3 3 ( 230026),,,, : O64311 ; O64213 : A : 10052281X(2008) 07Π821015206 Approimation pressions for the emperature Integral Chen Haiiang
= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f
2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T
Gapso t e q u t e n t a g ebra P open parenthesis N closing parenthesis fin i s a.. pheno mno nd iscovere \ centerline
G q v v G q v H 4 q 4 q v v ˆ ˆ H 4 ] 4 ˆ ] W q K j q G q K v v W v v H 4 z ] q 4 K ˆ 8 q ˆ j ˆ O C W K j ˆ [ K v ˆ [ [; 8 ] q ˆ K O C v ˆ ˆ z q [ R ; ˆ 8 ] R [ q v O C ˆ ˆ v - - ˆ - ˆ - v - q - - v -
.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o
G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M
Research on model of early2warning of enterprise crisis based on entropy
24 1 Vol. 24 No. 1 ont rol an d Decision 2009 1 Jan. 2009 : 100120920 (2009) 0120113205 1, 1, 2 (1., 100083 ; 2., 100846) :. ;,,. 2.,,. : ; ; ; : F270. 5 : A Research on model of early2warning of enterprise
CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital
C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal
! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $
[ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::
Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment
1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
Japanese Fuzzy String Matching in Cooking Recipes
1 Japanese Fuzzy String Matching in Cooking Recipes Michiko Yasukawa 1 In this paper, we propose Japanese fuzzy string matching in cooking recipes. Cooking recipes contain spelling variants for recipe
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.
Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού. Περιοδικός πίνακας: α. Είναι µια ταξινόµηση των στοιχείων κατά αύξοντα
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ
ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ Περίοδοι περιοδικού πίνακα Ο περιοδικός πίνακας αποτελείται από 7 περιόδους. Ο αριθμός των στοιχείων που περιλαμβάνει κάθε περίοδος δεν είναι σταθερός, δηλ. η περιοδικότητα
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A
2012 4 Chinese Journal of Applied Probability and Statistics Vol.28 No.2 Apr. 2012 730000. :. : O211.9. 1..... Johnson Stulz [3] 1987. Merton 1974 Johnson Stulz 1987. Hull White 1995 Klein 1996 2008 Klein
Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler
EΘΝΙΚΟ ΜΕΤΣΟΒΕΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler Συντάκτης: ΜΑΡΗΣ
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS
Electronic Supplementary Material (ESI) for Journal of Analytical Atomic Spectrometry. This journal is The Royal Society of Chemistry 2018 SUPPLEMENTAL INFORMATION Fully Automated Total Metals and Chromium
VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )
22 1 2002 1 Vol. 22 No. 1 Jan. 2002 Proceedings of the CSEE ν 2002 Chin. Soc. for Elec. Eng. :025828013 (2002) 0120017206 VSC 1, 1 2, (1., 310027 ; 2., 250061) STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A
7 2016 7 No. 7 Modular Machine Tool & Automatic Manufacturing Technique Jul. 2016 1001-2265 2016 07-0122 - 05 DOI 10. 13462 /j. cnki. mmtamt. 2016. 07. 035 * 100124 TH166 TG659 A Precision Modeling and
OILGEAR TAIFENG. (ml/rev) (bar) (bar) (L/min) (rpm) (kw)
PVWW!"#$ PVWW!"#$%&'()*+!"#$% 12!"#$%&'()*!!"#$%&'(!"#$!"#$%&'()*+!"#$%!!"#!$%&'()*+!"#$%!"!"#$%&'!"#$%&'!"#!"#$%!" SE!"!"#$%&'!"#!"#$%&'!"#$%&'!"#$!"#$!"#$%&'!"#$%&'!"#$%&!"#$%&'!"!"#$%&!"#$%&!"!"#$%!"#$%!"#$%&'(!"#$%&'!!"#!"#!"#$%&!"#$%&'(
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en)
Συμβούλιο της Ευρωπαϊκής Ένωσης Βρυξέλλες, 7 Μαρτίου 2017 (OR. en) 7057/17 ADD 1 TRANS 97 ΔΙΑΒΙΒΑΣΤΙΚΟ ΣΗΜΕΙΩΜΑ Αποστολέας: Ημερομηνία Παραλαβής: Αποδέκτης: Για τον Γενικό Γραμματέα της Ευρωπαϊκής Επιτροπής,
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΗΡΟΤΡΟΦΙΑΣ ΚΑΙ ΜΕΛΙΣΣΟΚΟΜΙΑΣ Πασχάλης Χαριζάνης Α. Η ΜΕΛΙΣΣΟΚΟΜΙΑ ΣΤΗΝ ΕΛΛΑΔΑ 1. Κερί Σύμφωνα με την Εθνική Στατιστική Υπηρεσία της Ελλάδος η παραγωγή κεριού για
Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής
ΗΛΕΚΤΡΟΝΙΚΗ ΟΜΗ ΚΑΙ Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ Παππάς Χρήστος Επίκουρος Καθηγητής ΤΟ ΜΕΓΕΘΟΣ ΤΩΝ ΑΤΟΜΩΝ Ατομική ακτίνα (r) : ½ της απόστασης μεταξύ δύο ομοιοπυρηνικών ατόμων, ενωμένων με απλό ομοιοπολικό δεσμό.
!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).
1 00 3 !!" 344#7 $39 %" 6181001 63(07) & : ' ( () #* ); ' + (# ) $ 39 ) : : 00 %" 6181001 63(07)!!" 344#7 «(» «%» «%» «%» «%» & ) 4 )&-%/0 +- «)» * «1» «1» «)» ) «(» «%» «%» + ) 30 «%» «%» )1+ / + : +3
Empirical best prediction under area-level Poisson mixed models
Noname manuscript No. (will be inserted by the editor Empirical best prediction under area-level Poisson mixed models Miguel Boubeta María José Lombardía Domingo Morales eceived: date / Accepted: date
Η γεωργία στην ΕΕ απαντώντας στην πρόκληση των κλιματικών αλλαγών
Ευρωπαϊκή Επιτροπή Γε ν ι κ ή Δ ι ε ύ θ υ ν σ η Γε ω ρ γ ί α ς κ α ι Αγ ρ ο τ ι κ ή ς Α ν ά π τ υ ξ η ς Ευρωπαϊκή Επιτροπή Γεωργία και αγροτική ανάπτυξη Για περισσότερες πληροφορίες 200 Rue de la Loi,
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.
2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06
ITU-R M MHz ITU-R M ( ) (epfd) (ARNS) (RNSS) ( /(DME) MHz (ARNS) MHz ITU-R M.
ITU-R M.64- (007-005-003) ITU-R M.64- MHz 5-64 (epfd) (RNSS) ().MHz 5-64 MHz 5-960 (RR) ( () (RNSS) ( /(DME) MHz 5-64 (RNSS) (TACAN) ( ITU-R M.639 MHz 5-64 WRC-000 ( (RNSS) (RNSS) () RNSS WRC-03 ( MHz
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
Στοιχεία εισηγητή Ημερομηνία: 10/10/2017
Θέμα μεταπτυχιακής διατριβής: Λογισμικά μελέτης και σχεδίασης ρομποτικών συστημάτων - συγκρτική μελέτη και εφαρμογές. 1) Μελέτη των δημοφιλών λογισμικών σχεδίασης ρομποτικών συστημάτων VREP και ROS. 2)
= 0.927rad, t = 1.16ms
P 9. [a] ω = 2πf = 800rad/s, f = ω 2π = 27.32Hz [b] T = /f = 7.85ms [c] I m = 25mA [d] i(0) = 25cos(36.87 ) = 00mA [e] φ = 36.87 ; φ = 36.87 (2π) = 0.6435 rad 360 [f] i = 0 when 800t + 36.87 = 90. Now
coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log
coupon effecs Fsher Cohen, Kramer and Waugh Ordnary Leas SquaresOLS 3 j τ = a0 a j m a4 log m a5c a6c a7 log C j= τ = a a a [ ] 0 m log m [ a, b] f Pn E f = max f x P x = f P n ( ) ( ) n ( ) a x b n ξ
Design and Fabrication of Water Heater with Electromagnetic Induction Heating
U Kamphaengsean Acad. J. Vol. 7, No. 2, 2009, Pages 48-60 ก 7 2 2552 ก ก กก ก Design and Fabrication of Water Heater with Electromagnetic Induction Heating 1* Geerapong Srivichai 1* ABSTRACT The purpose
J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
M p f(p, q) = (p + q) O(1)
l k M = E, I S = {S,..., S t } E S i = p i {,..., t} S S q S Y E q X S X Y = X Y I X S X Y = X Y I S q S q q p+q p q S q p i O q S pq p i O S 2 p q q p+q p q p+q p fp, q AM S O fp, q p + q p p+q p AM
Estimating Time of a Simple Step Change in Nonconforming Items in High-Yield Processes
Internatonal Journal of Industral Engneerng & Producton Management (22) March 22, Volume 22, Number 4 pp. 39-33 http://ijiepm.ust.ac.r/ Estmatng Tme of a Smple Step Change n Nonconformng Items n Hgh-Yeld
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
το περιεχόµενο των οποίων είναι διανεµηµένο µε τον εξής τρόπο: : κάθε πίστα περιέχει
Ref. 20622 EL %$ #"! + + * + ' (,$, * $,' +* )' ( ' & 4. 3: 046 2 4. 32 1. 0. @ 0.. A A0 ON B D CS SPN R NR KJ A G D R QDC ONR H PC KJ L MN \ [ Z RV RP N S H S A A. 0@ 2 : 9. ; KJ ^ N \ CV W]P E ] 8 6
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I
ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL SMAC) I Dynamicresponseof 2 nd ordersystem Prof.SongZhangMEG088) Solutions to ODEs Forann@thorderLTIsystem a n yn) + a n 1 y n 1) ++ a 1 "y + a 0 y = b m u m)
Θέμα : Retrieval Models. Ημερομηνία : 9 Μαρτίου 2006
ΗΥ-464: Συστήματα Ανάκτησης Πληροφορίας Informaton Retreval Systems Πανεπιστήμιο Κρήτης Άνοιξη 2006 Φροντιστήριο 2 Θέμα : Retreval Models Ημερομηνία : 9 Μαρτίου 2006 Outlne Prevous Semester Exercses Set
Calculation of ODH classification for Nevis LHe e-bubble Chamber Cryostat
Calculaton of ODH classfcaton for Nevs LHe e-bubble Chamber Cryostat. Physcal parameters Thermal propertes of Helum and Ntrogen Yongln Ju Nevs Laboratores, Columba Unversty, NY 533 T 3 [K] Pa 76 [mmhg]
[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]
OTROL. COISSION OF OTORIZATION AND ENERGETICS IN AGRICULTURE 0, Vol. 6, No. 5, 87 98 -,,, 008,.,., e-mal: mosgv@ukr.net. -,... -. :, -,. [],,.,,.., []. - (Danoss, Rexroth, Char-Lynn. [,, 5]),. -,.. [6]..,
A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems
IIC-11-8 A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems Takayuki Shiraishi, iroshi Fujimoto (The University of Tokyo) Abstract The purpose of this paper is achievement
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.
9.1 Inroducion 9.2 Lags in he Error Term: Auocorrelaion 9.3 Esimaing an AR(1) Error Model 9.4 Tesing for Auocorrelaion 9.5 An Inroducion o Forecasing: Auoregressive Models 9.6 Finie Disribued Lags 9.7
a,b a f a = , , r = = r = T
!" #$%" &' &$%( % ) *+, -./01/ 234 5 0462. 4-7 8 74-9:;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E
Smart Motor Controllers TM
Smart Motor Controllers TM Allen-Bradley Allen-Bradley Smart Motor Controller TM - (SMC) STC/SMC-2/SMC-3/SMC Delta STC/SMC-2/SMC-3/SMC Delta ( ) STC TM Starting Torque Controller SMC-2 TM Smart Motor Controller
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known